Mineral Prospectivity Mapping Method Integrating Multi-Sources Geology Spatial Data Sets and Case-Based Reasoning

نویسندگان

  • Binbin He
  • Jianhua Chen
  • Cuihua Chen
  • Yue Liu
چکیده

Extracting and synthesizing information from existing and massive amounts of geology spatial data sets is of great scientific significance and has considerable value in its applications. To make mineral exploration less expensive, more efficient, and more accurate, it is important to move beyond traditional concepts and establish a rapid, efficient, and intelligent method of predicting the existence and location of minerals. This paper describes a case-based reasoning (CBR) method for mineral prospectivity mapping that takes spatial features of geology data into account and offers an intelligent approach. This method include a metallogenic case representation that combines spatial and attribute features, metallogenic case-based storage organization, and a metallogenic case similarity retrieval model. The experiments were performed in the eastern Kunlun Mountains, China using CBR and weights-of-evidence (WOE), respectively. The results show that the prediction accuracy of the CBR is higher than that of the WOE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of various knowledge-driven and logistic-based mineral prospectivity methods to generate Cu and Au exploration targets Case study: Feyz-Abad area (North of Lut block, NE Iran)

Motivated by the recent successful results of using GIS modeling in a variety of problems related to the geosciences, some knowledge-based methods were applied to a regional scale mapping of the mineral potential, special for Cu-Au mineralization in the Feyz-Abad area located in the NE of Iran. Mineral Prospectivity Mapping (MPM) is a multi-step process that ranks a promising target area for mo...

متن کامل

Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity mapping

This paper describes the application of a new multi-criteria decision making (MCDM) technique called fuzzy outranking to map prospectivity for porphyry Cu Mo deposits. Various raster-based evidential layers involving geological, geophysical, and geochemical geo-data sets are integrated for mineral prospectivity mapping (MPM). In a case study, 13 layers of the Now Chun deposit located in the Ker...

متن کامل

Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping

Complexities of geological processes portrayed as certain feature in a map (e.g., faults) are natural sources of uncertainties in decision-making for exploration of mineral deposits. Besides natural sources of uncertainties, knowledge-driven (e.g., fuzzy logic) mineral prospectivity mapping (MPM) is also plagued and incurs further uncertainty in subjective judgment of analyst when there is no r...

متن کامل

Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity

In GIS-based data-driven modeling of mineral prospectivity, a suitably fine unit cell size is used for spatial representation of known occurrences of mineral deposits of the type sought (D) in a study area (T). However, until now, the unit cell size is chosen subjectively. In this paper, a methodology is proposed for objective selection of the most suitable unit cell size for data-driven modeli...

متن کامل

Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)

Machine learning methods that have been used in data-driven predictive modeling of mineral prospectivity (e.g., artificial neural networks) invariably require large number of training prospect/locations and are unable to handle missing values in certain evidential data. The Random Forests (RF) algorithm, which is a machine learning method, has recently been applied to data-driven predictive map...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013